In der Integralrechnung kann die Menge aller Stammfunktionen einer Umkehrfunktion mithilfe einer Formel angegeben werden, wenn stetig und invertierbar ist. Die Formel ist 1905 von dem französischen Mathematiker Charles-Ange Laisant veröffentlicht worden, der sich hauptsächlich mit der Analysis befasste.[1] Insbesondere für trigonometrische Funktionen, aber auch gewöhnliche invertierbare Funktionen, ist Laisants Satz ein nützliches Hilfsmittel für die Integration.